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Solving a Nonlinear Inverse Convection Problem Using the
Sequential Gradient Method

Sun Kyoung Kim, Woo II Lee*, Joon Sik Lee
Department of Mechanical Engineering, Seoul National University,

Seoul 151-742, Korea

This study investigates a nonlinear inverse convection problem for a laminar-forced

convective flow between two parallel plates. The upper plate is exposed to unknown heat flux

while the lower plate is insulated. The unknown heat flux is determined using temperature

measured on the lower plate. The thermophysical properties of the fluid are temperature

dependent, which renders the problem nonlinear. The sequential gradient method is applied to

this nonlinear inverse problem in order to solve the problem efficiently. The function spec

ification method is incorporated to stabilize the sequential estimation. The corresponding

adjoint formalism is provided. Accuracy and stability have been examined for the proposed

method with test cases. The tendency of deterministic error is investigated for several parameters.

Stable solutions are achieved even with severely impaired measurement data.
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Nomenclature---------
C
f
f

H : Channel height

J : Residual norm

k : Thermal conductivity

L : Channel length
m : Number of future time steps

M : Number of time steps

N : Number of nodal points along duct

P : Parameter for iterative improvement
Pe : Peelet number

R : The total number of repeated estimations

using the iterated final condition
.S : Conjugate direction

t : Time
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tr : Final time
t. : Final time for each sequence

to : Initial time for each sequence

T : Temperature

To : Initial temperature

Tin : Inlet temperature
u : Velocity, or step function

U : Mean velocity

v : Perturbed temperature

x : Axial distance along channel

y : Transverse coordinate
Y : Measured temperature

Greek

(3 : Step size

r : Conjugate coefficient

6t : Time step

D.x : Distance between nodal points along x
direction

(J : Standard deviation

t: : Time variable for solution of adjoint prob-

lem

Subscript

: Index
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o : Nominal value

+ Dimensionless variable

1. Introduction

The inverse analysis facilitates the estimation

of imperfectly described boundary conditions in

heat transfer problems, from the temperature

measurement inside or on the boundary. A variety

of studies has been performed for such problems,
called inverse heat conduction problem, consi

dering heat conduction of solid media. Compre

hensive reviews can be found regarding such

problem in some literatures (Beck et aI., 1985 and

Alifanov, 1994). On the other hand, a different
kind of inverse problem arises when the unknown

boundary condition for a convective heat transfer

problem is presented. It is called an inverse

convection problem. While inverse heat conduc

tion problems have been studied extensively,

inverse convection problems have received less
attention.

The convective flow inside a duct is of inter

est, since it can be applied to a variety of heat
exchanging systems. In particular, characterizing

the effects of stationary or transient heat flux

applied on the duct wall is important in the

control of such system. Thus, the direct problem
of the above described convection problem has

been investigated for various boundary condi

tions and duct shapes in great detail (Shah and
London, 1978). Several researchers have carried

out the inverse estimation of wall heat flux on

a duct wall, which is a characteristic inverse

convection problem. Moutsoglou conducted the
inverse analysis for determining the wall heat flux

in a vertical channel with laminar free-convective

flow using the sequential function specification

method (Moutsoglou, 1989). Huang and Ozisik
estimated the stationary wall heat flux of laminar

channel flow using the conjugate gradient method

(Huang and 6z~ik, 1992). Liu and 6zi~ik

estimated the transient wall heat flux for the

turbulent channel flow (Liu and 6zi~ik, 1996). Li

and Yan investigated a similar inverse problem

for the laminar flow (Li and Yan, 1999). Park

and Lee have solved an inverse convection prob-

lem based on the Karhunen- Loeve Galerkin pro

cedure (Park and Lee, 1998).

A forced laminar convective flow between two

parallel palates is considered. This work aims to

estimate the unknown heat flux applied to one

of the plates. Meanwhile, an adiabatic condition

is imposed on the other plates. Convection

problems with these boundary conditions have
been investigated comprehensively since such

asymmetric heat exchanges occur frequently in

thermal systems and experimental setups (Park

and Lee, 1998, Chin et al., 1988, Makkawi, et aI.,

1998, Tao, 1961). In this study, the temperature

readings are obtained on the adiabatic wall
whereas previous studies considers inside mea

surements (Liu and Ozisik, 1996, Park and Lee,

1998). The acquisition of temperature inside a

duct or on a heated surface is not an easy task
(McGee, 1988). Furthermore, temperature re

adings on an insulated wall can be conditioned

well, compared to those measured in a flow or on

a heat-exchanging surface.

The sequential gradient method, whose validity
is examined in the previous works (Reinhart and

Hao, 1996, Dowding and Beck, 1999), combined

with the function specification method (Beck et

al., 1985) facilitates solving this inverse convec
tion problem. The temperature dependent thermo

physical properties are utilized in this analysis,

which makes it a nonlinear problem. The corre
sponding adjoint formulation is provided for the

gradient evaluation (Alifanov, 1994, Liu and

Ozisik, 1996). A sequential version of the gradient
method, which considers a constant function

specification over a given interval and retention

of one time step per interval, is implemented.

Then, the developed method is applied to several
test cases. The tests have been performed for

varying flow rate, geometry, and error level.

In summary, this study presents a solution
method for nonlinear inverse convection problem

utilizing the sequential gradient method, which is

rather recently developed, and applies the method

to several test problems.



712 Sun Kyoung Kim. Woo Il Lee and Joon Sik Lee

2. Problem Statement and
Formulation

file is given by

U(Y)=6U(!I- ;;) (I b)

A fully-developed forced laminar convection

between two parallel plates is investigated. The

considered geometry is illustrated in Fig. I. While

the lower plate is insulated, the upper plate is

exposed to the unknown heat flux varying in

time and space, with known inlet and initial

temperature. The measurement data are obtained

at N equi-spaced locations on the outside of the
lower plate.

In order to alleviate the nonlinear nature of

the estimation and improve the computational

efficiency, the sequential gradient method is

incorporated with the function specification

method. This work selects the constant function

specification for its stability and simplicity. A

corresponding adjoint formulation for the

nonlinear inverse convection problem is made

(Alifanov, 1994). The formulation involves the

direct problem, the sensitivity problem, and the

adjoint problem. They are presented below.

2.1 Direct problem

Neglecting the axial diffusion, the energy equa

tion for a laminar forced convective flow between

two parallel plates, as shown in Fig. I, is given by

rt sr a( aT) .
Cat+C~ax=ay k-Jy ,In O<x<L, O<y<H (Ia)

where, the fully developed laminar velocity pro-

where U is the mean velocity and H is the

distance between upper and lower plate. The

initial condition and boundary conditions are

T'ix, y, to) = To ( l c)

T(O, y, t) = Tin ( Id)

ri». 0, t)
0 ( le)

ay
k T(x, H, t)

I(x, t) ( It)
ay

where to is the initial time, To is the initial

temperature, and Tin is the inlet temperature.

2.2 Sensitivity problem

When the unknown I is perturbed by a small

amount b..I, T undergoes a perturbation T+v.
Then, substituting in the original governing

equations T by T +u, I by b..1; perturbed
equations are obtained. Then, subtracting the

original equations from the perturbed equations

and neglecting the terms of the second order of

smallness give the following sensitivity equations.

acv +uacv (f(kv)
(2a)

at ax (}y2

vex, y, to)=0 (2b)

v(O, y, t) =0 (2c)
v(x,O, t)

0 (2d)(}y

8kv(x, H, t)
b.1(x, t) (2e)(}y

Fig. 1 Overview of the inverse convection problem
considered

x / "-
... Y(.r"t) Y(.r,...t)

L

'~'u(y)=<,1z._L)
~lH H'

T(O,y,t)=T.. \
, .I

y

T(.r,y,t)

an.

H n

T(.r.O,t) =0
Oy

2.2 Sequential estimation

The current inverse estimation is implemented

in a sequential manner. This method is similar to

the conventional sequential function specification

method (Beck et al., 1985) except that the adjoint

formalism (Alifanov, 1994) is utilized instead of

the least squares method utilizing sensitivity
coefficients.

Sequential schemes for the gradient method are

already described in the previous works (Rein

hart and Hao, 1996, Dowding and Beck, 1999).

However, the sequential procedure is briefly
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Deliberation on the increment t:..]==] (f+t:..
f) - ] (f) and neglecting the member of the sec

ond order of smallness, we obtain the following

variation of the residual ].

described again here. The whole time domain

0< t:::;. tf is discretized to M uniform intervals

with a fixed time step t:..t== tf/M. Every sequence

considers the time interval to < t s; t: Here, to is

the latest time when f (x, t) is regarded as

known, and t, is given by tl==to+mt:..t where m
is the number of future time steps. Typical

sequential methods retain only the first time step
for every sequential interval (Beck et al., 1985).

Retaining more than one time step is investigated

in the previous works (Dowding and Beck, 1999),

but it requires complicated statistical analysis to

be reliable (Flach and Ozi~ik, 1995). Thus, this

study considers retaining the first time step only.

Hence, the time interval is shifted by one time step

after each sequential estimation.

gives

I, L

J= f f[T(x, 0, t) - Y(x, t) ]2dxdt
" 0

tl H L

+fffA[.1-(k OT)-C oT -CuR]dxdydtoy oy ot ox
"00

I, L

J= f f2[ ti« 0, t) - Y(x, t)]v(x, 0, t) dxdt
" 0

+f"fHf~[Q2kV _oCv -uoCV]dxdydt
oy2 ot ox

" 0 0

(5)

(6)

Then, using the identity t:..f(x) =t:..f(x, t) in

Eq. (2e) , t:..J becomes

By definition of the square-integrable function

space, the following expression is valid
(Alifanov, 1985).

Subsequent to integrating by parts, utilizing the

arbitrariness of the increments of state variable v
and the boundary conditions of the sensitivity

problem, the following adjoint problem is

obtained.

(9)

(8)

(7e)

(7a)

(7b)

(7c)

(7d)

f(x) = f (x, t)

t, L

t:..J=-!!t\t:..fdxdt
t, 0

aA aA J2A
-CaF-uCax=k ay2

A(x, y, tl ) =0
A(L, y, t) =0

-2[T(x, 0, t) - Y(x, t)]

aA(x, H, t) 0
ay

,.l(x,O, t)
Jy

Via the substitutions that ~=L-x and r=
t l - t, the adjoint problem can be solved by a
similar way as the direct and sensitivity problems

are solved. Then, a constant function fis specified

over the entire interval to < t:::;. ti, which is

expressed as

(4)

where Y is the measured temperature. Assuming
the constant standard deviation of the measured

temperature over the sequential interval and

space, the admissible target value of the residual

functional becomes

where (J is the standard deviation of the measured

temperature. In order to achieve the above

optimality, the gradient evaluation is required.

The gradient of] can be obtained by utilizing the

solution of the adjoint problem. Let us introduce

Lagrange multiplier A to derive the adjoint prob
lem. The Lagrangian function can be written as

follows by the modifying Eq. (3) to absorb Eq.

(1a) as a constraint. Integrating Eq. (La) multi

plied by Aover time and space domain, and then

adding this expression to the residual functional,

2.4 Inverse problem and adjoint formulation
Since the inverse problem is mathematically

ill-posed (Beck et al., 1985 and Alifanov, 1994),

it is to be treated as an optimization problem

(Jarny, et al., 1991). The optimization problem

aims to achieve statistical consistency between the

measured and computed temperatures. The statist

-cal consistency can be measured by the following

residual functional for single sequence.

I, L

]=!!CT(x,O, t)-Y(x, t)J 2dxdt (3)
~ 0
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Comparing eqs. (9) and (10) gives the follow
ing gradient equation.

t,

f'(x) = - f;,,(x, H, t) dt (11)
t.

2.5 Optimization procedure
The iterative method using the conjugate gra

dient method already established in the previous
investigation is utilized (Alifanov, 1985). The
unknown heat flux is updated by

L

f:j,j = ff' (x) f:j,fdx
o

(10)
update the temperature field.

4. Check Eq. (4). If satisfied go to 10.
5. Solve the adjoint problem given by Eq. (7).
6. Calculate the gradient using Eq. (11) to

obtain ;".
7. Evaluate S using Eqs. (13) - (14).
8. Solve the sensitivity problem using Eq. (2)

to obtain ut», y, z, t) after setting f:j,f=5.
9. Calculate (3 using Eq. (15) and update f

using Eq. (12) and go to 3.
10. Record f(x, y, to+f:j,t) as heat flux for the

current time and set to=to+f:j,t.
II. If to>tf, finish, else go to 2.

Furthermore, (3 can be determined by lin
earization of j 'J"- (35) followed by setting oj/
0(3=0. It follows that

I. Set m; M.
2. Give an initial guess for f within the given

interval using the result from previous interval.
3. Solve the direct problem given by Eq. (I) to

Here, the conjugate coefficient r is set as 0 for
initial state, otherwise is given by the following
expression, which is suitable for nonlinear IHCPs
(Alifanov, 1985 and Jarny et aI., 1991).

t, L

/3=(!![T(x,O, t) - Y(x, t)]v(x, 0, t)dxdt) /
:. 0 (15)

I, L

(!![v(x, 0, t)J2dxdt)
t. 0

2.7 Singularity in the final step
Inherently, the adjoint formulation for the

current inverse problem can involve singularity
in gradient due to the boundary and initial
conditions for the adjoint equations (Eqs. (7b)
and (7c)). Thus,f(x+, tf) andf(L, t+) cannot

change its value while the optimization procedure
with the conventional gradient method. This
singularity cannot be avoided without additional
modification in the conventional gradient meth
od. However, there is no such singularity in the
time domain with the current method thanks to
sequential estimation since the gradient is avera
ged over the sequential interval (Reinhart and
Hao, 1996).

Despite the absence of singularity in the time
domain, we still have a singularity in the space
domain at x = L. The best way is to perform the
inverse estimation with known f (L, t+) (for
example, adiabatic condition). However, some
times f (L, t+) cannot be known prior to estima
tion and the singularity should be resolved.
In order to overcome this singularity, several

2.6 Numerical discretization
Numerical solutions of the direct, sensmvity

and adjoint problems are essential in this inverse
estimation. This work employs the finite volume
method with the upwind scheme in x-directicn
and the Crank-Nicolson scheme in the time
domain (Patankar, 1980). The whole space
domain is discretized by a N X N uniform grid
system.

(14)

(13)

(12)

L

r=(ff'(x) [f'(x) - f'P(x) Jdx ) /
o
L

(f[f'p(x, t) J2dx )
o

f=jP-(35

The conjugate direction is of the form

5=f'+r5P

When the selected (3 incurs the increase of j,
which can occur due to the augmented non
linearity caused by the temperature dependence of
the thermo physical properties, the golden section
search facilitates the correction of (3.

In summary, the solution procedure is as
follows:
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methods have been proposed (Alifanov, 1995).

The simplest technique is to utilize the iterated

final condition (Silva and Ozisik, 1992). This

method repeats the estimation by taking the initial

guess for 1 (x", t+) as the value from the previous

estimation I P (xe, t+). Here Xe is selected near

x=L by determining a proper value of p in the

following expression.

where

Xe=L-p!:u ( 16)

3.2 Test conditions
To examine the applicability of the proposed

method to a nonlinear problem, the following

temperature dependent properties of a virtual flu

id are considered for test cases.

k=I+O.OIT, (W/m·C) (19a)

C=I +0.001 T 2
, (J/m3·C) (l9b)

The test cases have been performed using

artificially generated measurement data with and

without errors. The errors are artificially em

bedded to the exact data by the following manner.

!:u=LI(N-I) ( 17) Y!= Yexaet,i+6ri, i=l, "', NxM (20)

Furthermore, the total number of repeated

estimations using the iterated final condition (the

number of repeating the whole solution procedure

described above) is set as R. This method is very

easy to implement with slight modifications to the

regular method. In addition, a few more methods,

which are more systematic, can be exploited, but

they are complicated and can sometimes cause

more resolution loss than the described method

due to integration (Silva and 6z~ik, 1992) or

regularization (Dowding and Beck, 1999) espe

cially in the region far from the final point.

3. Results and Discussion

The presented method is tested for a couple of

heat flux forms to examine its validity. The test

cases consider conditions stated below.

3.1 Dimensionless variables
Let us introduce the following dimensionless

variables involving the Peelet number, PeH,

where r, is a normally distributed random

variable with zero mean and unit standard

deviation within 99% confidence interval, i.e.

-2.576< ri<2.576. The random variable is

generated by the IMSL® C function random

_normal. Yexact,i and Y i are the exact and noisy

measured temperature, respectively. The numeri

cal solution of the corresponding direct problem

provides the exact data.

A parametric study is preformed for varying

flow rate (PeH), error level (6), and geometry

(LIH). Besides, the number of future time steps

is 5 for the test cases if not specified. In this

inverse problem, the Peelet number as well as the
dimensionless time step (6.t+ = ko6.tCo-1L -2)

affects the stability since parabolic nature of the

partial differential equation is augmented by the

convective term. The number of nodal points in

each direction N is set equal to 40. The time step

is set as 6.t =O.ls (6.t+ =0.1) and the estimation is

conducted for a total of 50 time steps (M=50).
Besides, the length is fixed as L= lm and the

aspect ratio is given by HIL= I if not specified.

(18a)

(18b)

( 18c)

3.3 Time-wise constant heat flux case
The spatial distribution of heat flux is given by

the following expression.

where Co and ko are nominal values of

volumetric heat capacity and thermal conductivity

at T=O·C, respectively. 6+ is the dimensionless

standard deviation of temperature readings. Be

sides, 10 and 1+ are a nominal and a dimen

sionless heat flux, respectively.

I(x+, t+)Ilo=u(O.S-x+) (21)

where 10= 100W1m2
, U is the unit step function.

Figure 2 shows the reconstructed heat flux for

varying Peelet number using the exact mea

surement data. For the decreased Peelet number

(PeH=0.2), the overshoot near the step is exag-
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a
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Dimensionless Axial Location, X'

Fig. 2 Estimation of wall heat flux using exact
measurement data for varying Peelet number
(PeH=0.2, 1,5)

Dirrensionless lime. I

Fig. 4 Time-wise estimation of constant wall heat
flux using noisy measurement data (0-+=0.1,

0.5, I) with m=5 and PeH= 1 at x+=0.25

Dimensionless Axial Location, x·

Fig. 3 Estimation of wall heat flux using noisy
measurement data (0-+=0.1,0.5, I) with m=

5 and PeH=1

gerated. On the contrary, for the increased Peelet

number (PeH=5), a considerable loss of resolu
tion is observed as can be seen in the figure. Thus,

the estimation is expected to be inaccurate for the

Peelet number out of a certain range. Figure 3

shows the result using noisy data for PeH= I at

t+=2.5. This result demonstrates that the increase
in error level leads to the loss in resolving power.

Furthermore, the heat flux value deviates
considerably from the exact value in the upper

3.4 Time-wise triangular heat flux form
In order to investigate time-varying heat flux,

triangular heat flux form is selected, which is

expressed as

Other conditions are identical to the previous

case. Estimation is performed using noisy mea

surement data, whose standard deviations are
given by 6+=0.02, 0.1 and 0.5. Here, 6+=0.1

approximately corresponds to 0.5% error based

on the average of measurement data.
Figure 5 shows the estimated heat flux at x+=

0.25. The fluctuation becomes more intense along

as the error level is increased. However, even with

a"=0.5, a stable estimation is achieved as can be

seen in the figure. Figure 6 shows the result with

varying the number of future time steps. As the

number of the future time steps increases, the heat

step as can be seen in the figure. However, what

is noticeable is that in spite of the increased error

level, nearly no fluctuation is observed in the

estimation. Contrarily, the reconstruction of the

time varying heat flux shown in Fig. 4 shows
significant disturbance at x+=0.25. This evi

dences that the noise in measurement data incurs

time-wise fluctuation and space-wise loss of res

olution at the same time .

0.8

--Exact
---0.1

-<>-0.5
..·-0"'1

0.60.4

Dimensionless Standard Deviation, a"

0.2o

a

'-.
1.2 .

x·
::l
u::....,

0.8J:

~....
3 0.4l:
.2..
l:.,
.S
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Dimensionless Standard Deviation, cI

0.8

................

Aspect Ratio, HIL
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0.60.40.2a

1.2

a
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--Exact
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......
x
::J 0.8u::
1;;.,
J: 0.6
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C
.2
UJ
c.,
E
i:5

·0.2
a

Dimensionless Time, (

Fig. 5 Time-wise estimation of triangular wall heat
flux using noisy measurement data (0-+=0.02,

0.1,0.5) with m=5 and PeH=1 at x+=0.25

Dimensionless AxialLocation, x+

Fig. 7 Time-wise estimation using exact measure
ment data for varying aspect ratio (H / L=

0.1,0.5, 1,2, 10) with m=5 and PeH=1 at
t+=2.5

(24)

(23)

with increasing aspect ratio as can be seen in the
figure. It is evident that the measurement data is

very insensitive to surface heat flux when the

aspect ratio is reduced. On the other hand, when

the aspect ratio is increased, the estimation

requires more iteration since the increased tem

perature variation due to the longer heating

causes higher nonlinearity.

The result shows that the singularity is resolved

with the sequential method. Here, the implemen

tation of the conventional method (the whole

domain method) is accomplished by following a
previous work (Huang and Ozisik, 1992).

Finally, the iterative improvement technique is

tested with the following heat flux form.

Figure 9 compares the results for three different

cases: (1) with the iterative improvement and

3.5 Singularity issue
Figure 8 shows a computational result using

the conventional and sequential methods for a
case, which considers the following heat flux

form.

543

l~
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0.8
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~ ( '!!'

....:~.~.~:>..&O:::::....<
, l 1/' 00-0, ~ "

•••~~~~.e 6.
0.;±.,:

lp' 'q'..
qo~o Number of Future R.o'

0.2 ... > i Time Steps. m

: ": .-.-.-.. ;xact
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··.... ··-10

-0.2 L..L-'-~....L-'-~-'-l...>..-'-~-L-'-'~......JL.......-'-~.J

a

flux becomes smoother. For m= 10, the heat flux
shows a considerable bias near t+=2.5. Figure 7

shows the heat flux form at t+=2.5 recovered for

different aspect ratio (H/L =0.1,0.5, 1,2,10).

As the aspect ratio increases, the duration of

heating decreases. As a result, increased bias is

observed for H / L=2. The peak point on the

upper side near the step moves backwards along

Dimensionless Time, to

Fig. 6 Time-wise estimation of constant wall heat
flux using noisy measurement data (0-+=0.5)

for varying future time steps (m=5, 7, 10)
with PeH=1 at x+=0.25
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Dimensionless Standard
Deviation. or =0.1

o 0.2 0.4 0.8 0.8

Dimensionfess AxialLocation, :c+
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4. Conclusion

The sequential gradient method is applied to
an inverse convection problem. The problem
considers a laminar convective flow between
parallel plates, The upper plate is exposed to

unknown heat flux while the lower plate is in
sulated. The unknown heat flux is estimated
inversely from temperature measured on the lower
plate. The function specification method is
incorporated to stabilize the sequential estima
tion. The relevant adjoint formulation has been
made. Accuracy and stability have been examined
extensively for various test cases. Furthermore,
the proposed method is beneficial in resolving the
nonlinearity caused by the temperature dependent
thermophysical properties and the singularity in
the final time thanks to the sequential estimation.
Besides, it is observed the singularity in the space
domain can be alleviated with the iterative im
provement technique. The overall performance of
the method is verified valid from several stringent
tests as shown in the results.
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Fig. 9 Estimation of wall heat flux using noisy
measurement data (0'+=0.1) with m=5 and
PeH= I. Comparison of results with and
without iterative improvement, and with ex
act and inexact initial guesses

--Exact
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case (1)
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.......- with exact initial guess, I
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Fig. 8 Time-wise estimation of constant wall heat
flux using exact measurement data (0'+=0)

with PeH= I at x+=0.25. Comparison of the
sequential gradient method (m=5) and con
ventional gradient method

unknown f (L, t"); (2) without the iterative

improvement and unknown f (L, rv. (3) with
out the iterative improvement and known f (L,
t+). As can be seen in the figure, the result for

case (2) is unacceptable while the results for cases
(I) and (3) are comparable. This result verifies
effectiveness of the iterative improvement. Here,
the calculation for case (I) is conducted with p=
2 and R=5.
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